- QQ2080053532
- 等级:普通会员
- 头衔:
论坛元老
- 星数:
- 帖数:4735
- 精华:0
- 积分:2047
- 消息:

-
查看资料
|
-
发布于:2023-05-30 00:22
-
ChatGPT生成量化交易策略,真好玩
最近比较火的OpenAI-ChatGPT,太有意思了。尝试让它写了几个策略,您别说,还真是有模有样。我们来看看吧。
模型一:均值回归模型

源码:
- import numpy as np
- import pandas as pd
- from sklearn import linear_model
- import numpy as np
- import pandas as pd
- from sklearn import linear_model
- # 定义交易资金
- capital = 100000
- # 定义每次交易的数量
- trade_qty = 1000
- # 定义交易费用
- trade_fee = 0.003
- # 定义时间跨度
- time_span = 10
- # 计算交易收益
- def calc_profit(open_price, close_price):
- return (close_price - open_price) * trade_qty - trade_qty * trade_fee * 2
- # 计算交易均值回归模型
- def calc_linear_model(df):
- X = np.array(df['open']).reshape(-1, 1)
- y = np.array(df['close']).reshape(-1, 1)
- model = linear_model.LinearRegression()
- model.fit(X, y)
- return model.coef_[0][0], model.intercept_[0]
- # 读入交易数据
- df = pd.read_csv('trade_data.csv')
- # 计算交易均值回归模型参数
- slope, intercept = calc_linear_model(df)
- # 初始化资产和交易结果
- capital_list = []
- result_list = []
- # 开始交易
- for i in range(time_span, len(df)):
- # 计算收益
- open_price = df.iloc[i-time_span]['open']
- close_price = df.iloc[i]['close']
- profit = calc_profit(open_price, close_price)
- # 更新资产
- capital += profit
- # 记录交易结果
- capital_list.append(capital)
- result_list.append(profit)
- # 输出交易结果
- print('Final capital:', capital)
模型二:一个均线策略

源码:
# 导入需要的库
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- # 导入股票数据
- stock_data = pd.read_csv('stock_data.csv')
- # 计算移动平均线
- ma_5 = stock_data['close'].rolling(5).mean()
- ma_10 = stock_data['close'].rolling(10).mean()
- # 绘制移动平均线图
- plt.plot(stock_data['date'], ma_5)
- plt.plot(stock_data['date'], ma_10)
- plt.title('Moving Average')
- plt.xlabel('Date')
- plt.ylabel('Price')
- plt.legend(['MA5', 'MA10'])
- # 定义交易策略
- def trade(stock_data, ma_5, ma_10):
- # 创建交易信号数组
- signals = np.zeros(len(stock_data))
- # 遍历每个交易日
- for i in range(len(stock_data)):
- # 如果MA5大于MA10,则买入
- if ma_5[i] > ma_10[i]:
- signals[i] = 1
- # 如果MA5小于MA10,则卖出
- elif ma_5[i] < ma_10[i]:
- signals[i] = -1
- return signals
- # 运行交易策略
- signals = trade(stock_data, ma_5, ma_10)
- # 计算持仓和收益
- position = 0
- profit = 0
- for i in range(len(signals)):
- # 买入
- if signals[i] == 1:
- position += stock_data['close'][i]
- # 卖出
- elif signals[i] == -1:
- profit += stock_data['close'][i] - position
- position = 0
- # 输出最终收益
- print('Final profit:', profit)
模型三:唐奇安通道+MACD

源码:
- import numpy as np
- import talib
- # 定义唐奇安通道函数
- def Donchian(close, n):
- high = talib.MAX(close, n)
- low = talib.MIN(close, n)
- return high, low
- # 定义MACD函数
- def MACD(close, n_fast, n_slow, n_signal):
- macd, signal, hist = talib.MACD(close, n_fast, n_slow, n_signal)
- return macd, signal, hist
- # 定义交易函数
- def trade(open, close, high, low, macd, signal, hist):
- # 初始化持仓状态和交易信号
- position = 0
- signal = 0
- # 获取唐奇安通道上轨和下轨
- donchian_high, donchian_low = Donchian(close, 20)
- # 计算MACD和信号线
- macd, signal, hist = MACD(close, 12, 26, 9)
- # 判断交易信号
- if position == 0:
- # 如果当前没有持仓,判断开仓信号
- if macd[-1] > signal[-1] and hist[-1] > 0 and close[-1] > donchian_high[-1]:
- # 如果当前MACD大于信号线,且柱状图大于0,且收盘价高于唐奇安通道上轨,则开多仓
- signal = 1
- elif macd[-1] < signal[-1] and hist[-1] < 0 and close[-1] < donchian_low[-1]:
- # 如果当前MACD小于信号线,且柱状图小于0,且收盘价低于唐奇安通道下轨,则开空仓
- signal = -1
- else:
- # 如果当前有持仓,判断平仓信号
- if position > 0 and close[-1] < donchian_low[-1]:
- # 如果当前持多仓,且收盘价低于唐奇安通道下轨,则平多仓
模型四:机器学习策略

源码: 编写期货收益率预测模型的过程可能比较复杂,因为这类模型通常需要考虑许多因素。但是,以下是一个简单的Python程序,它使用Scikit-learn库来构建并训练一个期货收益率预测模型:
- # Import necessary libraries
- from sklearn import linear_model
- from sklearn import metrics
- # Load data
- X = ... # Feature data
- y = ... # Target data
- # Split data into training and test sets
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
- # Train model
- model = linear_model.LinearRegression()
- model.fit(X_train, y_train)
- # Evaluate model
- y_pred = model.predict(X_test)
- print(metrics.mean_squared_error(y_test, y_pred))
这个程序使用线性回归来构建模型,并用均方误差(MSE)来评估模型的性能。在实际应用中,您可能需要使用更复杂的模型,并使用多种指标来评估模型的性能。此外,您还需要准备足够的数据来训练模型,并确保数据的质量和准确性。 哈哈哈,太有意思了铁子们,我们和它聊聊天。 

源码:
- import matplotlib.pyplot as plt
- # Set figure size
- plt.figure(figsize=(4, 4))
- # Draw squirrel
- plt.plot([1, 1, 2, 2, 3, 3, 4], [1, 2, 2, 3, 3, 2, 2], 'k')
- plt.plot([1.5, 1.5, 2.5, 2.5], [1, 2, 2, 1], 'k')
- plt.plot([2, 2], [1.5, 2.5], 'k')
- # Fill in the face and belly
- plt.fill([1.5, 1.5, 2.5, 2.5], [1, 2, 2, 1], 'b')
- plt.fill([2, 2], [1.5, 2.5], 'b')
- # Draw the eyes
- plt.plot([1.25, 1.75], [1.75, 1.75], 'k')
- plt.plot([2.25, 2.75], [1.75, 1.75], 'k')
- # Show the plot
- plt.show()

哈哈哈哈,这也不像松鼠啊。
-
个人签名
IP 属地:绍兴
-
相关帖子
-
收藏
顶 0
踩 0
|